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To the description of changes of solid particle size in population, the application was propo:
stochastic differential equations and diffusion equations adequate to them making it possible to
the development of these populations in time. Particular relations were derived for some partic
distributions in flow and batch equipments. It was shown that it is expedient to complemel
population balances often used for the description of granular systems by a “diffusion” term
it possible to express the effects of random influences in the growth process and/or particle dimi
Key words: Particle size distribution; Population balances; Stochastic differential equations.

The operations often occur in chemical engineering connected with the solid pe
growth (crystallization, polymerization) or with their dimension diminution (grindil
crushing, dissolution). In vast majority of cases, the size change of such particle
be considered as a non-stationary stochastic process leading to their certain distr
both as to their size and as to their shape. In the theoretical description of such sy
the shape factor of a particle of the given population is usually considered uncha
This assumption makes it possible to choose some patrticle length dimension to
basic characteristic. During the above-mentioned operations, even the — in gener:
dom — motion of these particles takes place, so that the further characteristics
process will be position and momentum of their centre of gravity.

In considerations aiming at practical applications, however, the last two quar
are not, as a rule, considered, and a uniform particle distribution is usually assur
working space or in the inlet and outlet fluid streams which carry htbegparticles.
The characteristic particle dimensibft) which may generally be considered as a s
chastic time function is then the only defining factor when describing the particle “behav
This linear dimension will be called the particle size in further text. As a general charact
distribution functionF(l;t) is introduced for the stochastic functions in probability tt
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ory as probabilityP that the particle size will be at instaribwer than the given value
of variablel,

F(ity =P L) <17, 1)

or, as the case may be, the first derivative of this function — the probability densi

(1) = "Fa(:;t) . (1a)

The term probability density will sometimes be replaced by the term particle
tribution density in further text.

For a fixed time instartt=t,, the distribution function approximates the particle si
distribution in some set (population)

NDL(tl) <If

F)=F(it) = - N =NL(ty < @

i.e., as numbeN particles smaller thanout of the set considered to the total nunitbeof
particles in the same set. The relation holds the more accurately the la¥gemighis
way defined function or its probability densityl) = dF*(1)/dl is then approximated by
some functions derived in the probability theory, or if need be, by some emp
distributions. For the description of stationary distributions of solid particles,
usually employs3the probability density of normal distributidg(l;L,0%), of lognormal
distributionfy(log I;log L',log? ¢’)/l, gamma distributiorig(l;a/b, a + 1), from _the em-
pirical relations, most often the Rosin—Rammler d|str|butn;z(rh/’L)Y‘l exp [- Q/L)V]/L
For the description of development of the solid particle population, Randolph
Larsorf used the population balance (see als®)refind derived a first-order partia
differential equation whose solution is a so-called solid particle population densit)

n(l;t) = f(l;t) % , (©)

* The distribution parameter designation in this paragraph was taken over from the workd c
Functionsfy() andfg() are defined in the List of Functions.
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whereV is the suspension volume in the system in which the considered popu
occurs. Authorsshowed that under some simplifying assumptions, the population ba
for this system can be written in the form

on(iy) AN, D) g @

where symbol/(l) stands for the rate of change of particle sizetahd mean residence
time of particles in system, if the system considered is flow one (in a non-flow sy:
evidently, the mean residence time grows limitlessly, and the last term is equal to
For constant values di; andV, the population density is directly proportional to tl
probability density of particle size distribution, and E4). is consequently identica
even for the functioffil;t).

The aim of this work is the effort to describe the particle size changes from a ul
point of view; we shall consider these changes to be stochastic process of diffusio
(see, e.g. refsd). We shall show simultaneously that the approach proposed here n
it possible to describe the chronological development of populations, sometimes
only by means of elementary functions. The partial results attained in this directi
other authors will be referred to at the respective places in discussion*.

THEORETICAL

The changes of solid particle size will be described first in a non-flow stirred e«
ment, i.e., in a bounded system in which the particles can freely move. Let us co
a single particle and accept these assumptions as to the changes of its size:

1. Neither on changing the particle size, nor during its motion, a change of its ¢
occurs.

2. The particle in the system neither arises, nor decays.

3. The initial particle size is generally random and can be determined by the |
size distribution.

4. The change rate of particle size consists of the deterministic and stochasti
tribution; the discrete changes of its size are here excluded. Both the contributiot
be generally a function of particle size but not explicitly of time.

The given assumptions determine the size distribution of the particle conside
any time instant count from the beginning of process. From the law of averages fc
that this distribution makes it possible to describe the size distribution of particl

* The paper submitted has largely the formal mathematical character. Therefore, hereinafter w
not judge, e.g., the physical meaning of particular parameters in relations written.
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identical shape the more accurately the greater the population of these particles
given assumptions, therefore, make it possible to determine the particle size distri
of this population.

The first assumption defines the shape invariability of the particle. According t
second assumption, the processes of arising and decaying the particle are ex
This limitation requires the initiation of the process of particle growing by “seedi
The distribution of “seeding” particles, i.e., the initial size distribution density is de
mined by the third assumption. (As the initial distribution we shall often consider
the set of particles of a single negligibly small —i.e., practically zero — size.) The f
assumption excludes step changes of size, therefore, the processes of agglomer:
on the contrary, disaggregation. Random changes in size are then only of “diffus
character and are determined by the so-called Wiener process (see, &%. Tis
assumption requires as well that the conditions under which the change of partic
occur (e.g., the stirring intensity) should not change in time during the proces
opposite case, both the above-mentioned rate contributions might be an explicit
tion of time.

On the basis of the above-mentioned assumptions, it is possible to describe tl
chastic change of particle sizé) in terms of the so-called stochastic differential eqt
tion®—8

dL(t) = V[L(D)] dt + W[L()] dW(D) ®)

where the first term on the right-hand side stands for the deterministic and the s
term the stochastic contribution to the particle size change. Sy{lostands for the
Wiener process (see, e.g. fgf.which is a stochastic function of time with norm
distribution, zero expected value and the dispersion equal to time interval fror
beginning of proce$s Ordinates of this process can, with the same probability, 1
positive and negative values. This property sets certain limits to the coefficients H): E
They must be apparently such that the length dimension of particle should have :
tive value at each instant.

In the literature (see, e.g. réf3, a so-called transitive probability densftft;t|l ;t;)
is defined for procesis(t) which characterizes the probability that the particle size \
have a value near toat instantt on condition that at the initial instadt= t,, it was
equall,. It is proved there that functioiy) is the solution of the partial differentia
equation

of, ov(Df] 1 wWA()f]
at A 2 a2 7 ©)
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This equation requires generally one initial and two boundary conditions in intetVat 6.
For the upper limit of the interval, the condition |lim f,(I;t|l ;;t,) = 0, which means tha
the particle size is not generally limited from above, however, the probability c
growth ad infinitum is zero. In case of the lower limit (i.e., Ifer 0), the situation is
more complicated. Gichman and Skorokhatfirm that in case of a so-called natur.
boundary (that is such which cannot be reached by the given process), comg@)onsO
andv(0) = 0 have to hold here for coefficients of .K§).

In agreement with the Feller thedry, it is not necessary to consider the bound:
conditions at all in case of the natural boundary for proc@¥$s not able to reach this
boundary and consequently |in. fi(I;itll;;t,) = 0. However, from this theory simulta
neously follows that for the non-zero value of probability density at peir@ (i.e., for
null particle size — this situation may occur above all wwé) = 0 andv(0) = 0), the
situation is not so simple. The boundary conditionlfer 0 will then depend on the
actual form of coefficients(l) andw(l).

In our further considerations, we shall mostly assume the natural boundaries
opposite case (i.e., other type of bounds at goin®) will be always discussed separ
tely, by the term zero-size particle being understand the particle whose dimensio
negligibly small.

The initial condition is in agreement with the third assumption given and it ma
generally written in the norm form as the probability dengjtl;t,) which gives the
initial particle distribution. For a non-flow system we shall always considett tkra
and omit this designation in further records, i.e., we shall write, fg{t:0) = ().
Equation 6) is linear with respect t§(), and its solution will be therefore as well tt
integral

f(l:t) = j: R0 0 diy @)

The probability densities in this equation may be understood in this way: Fufjftic
gives the particle distribution at instanbn the assumption that at the initial (zer
instant, they all were of the same sizeFunctionf() characterizes their distribution &
instantt for the case when their initial distribution is given by functigih For valuest
growing ad infinitum (i.e., practically for a great time interval elapsing from the be
ning of the process), it is possible to determine the stationary distribution (as far a
a distribution exists) by the relation

f(1) = lim f(l;t) . ®

to o
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Let us go over to the case of flow system and complement the above-ment
assumptions with others:

5. The number of particles passing throug the system along with the entraining
is invariable in time. The distribution of their sizggl,) at the system inlet is not :
function of time.

6. The particle residence time in the system, i.e., time inté&waktween the mo-
ments of input and output, is, in general, a stochastic quantity whose probability d
f;(At) is given and does not vary with time.

The two assumptions along with assumptoexpress the fact that the system fur
tions under steady conditions, as a matter of fact, above all at constant mediun
rate, and under constant stirring regime. The coefficients in g€ @) will there-
fore be nor in this case an explicit function of time, and as far as the operation
tions in the flow and non-flow system considerably do not differ, they may be for
these cases considered identical.

In the theory of stochastic proces$asis further proved that unless the above-me
tioned coefficients are functions of time, the transitive probability density has a stz
ary form to the effect that it does not depend on time instaatsit, individually but
only on their differencefy(I;tll;t,) = fi(l;it —t,ll,) = (LAt ).

On the basis of these considerations and on the assumption that the initial di
tion in the non-flow and the inlet distribution in the flow system are identical (i.e.,
follp) = fip(1p), the functionf(l;At) defined by Eq. %) can be understood as the pro
ability density characterizing the distribution of particles leaving the system with
same residence timet.

The density of particle size distribution in the outlet stréghare then determinec
in terms of a so-called randomization of time parameter (see, elg) ref.

=] : f(1;At) f(At) dAt |, )

wheref:(At) is the probability density of residence time distribution in flow system
The procedure outlined makes it possible to compute generally the particle dis
tion in flow system; we shall show in Discussion that it is, in a certain respect, a ge
lization of population balancé) The particular form of the coefficients in E§) pas to
be chosen on the basis of physical insights into the given process. The general sc
of corresponding Eq.6§ under the suitably chosen initial and boundary conditions
if need be, the subsequent randomizati@nafe, of course, sufficiently complicatec
and therefore it is usually necessary to employ suitable numerical methods. Ir
paragraph, however, we shall show that some distributions used in practice or &
lower moments of these distributions can be obtained by analytical procedures.
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Particular Relations for Particle Distribution in Non-Flow System

Further we shall present only such distribution densities of solid particle or mome
these distributions which may be expressed in terms of elementary functions. The
vations of some relations and the results which contain higher transcendental fur
are given in Appendix.

In concretizing the form of coefficients in E®)(we shall assume that they are su
that they are, either in Ech)(or in Eq. 6), a linear function of particle size. Equatid) (
takes then the form

dL(t) = (o = BL(D) dt + K[ L(D)]9 AW(Y) [a=0,¥2,1] . @ao

From the discussion of boundary conditions of Egjsand 6) it follows that it is
necessary to delimit the range of validity of coefficiemt$3, andk,, in Eq. 0). The
requirement of natural boundaries fdt) = O leads to these conditions

a=0 ; —oo<B<+oo : KO:O ;=00 <Kq,Ky<+oo . (11)

Further we shall show that only some combinations of these parameters are sulits
the description of changes of particle size. From Byjsutd ) follows that the partial
differential equation for transitive probability densitii;t|1,),

O Ol —BDil 1, 017 _
ot ol 27 9

12

corresponds to relatiorl Q).

It is apparent that Eq10Q) is linear with respect to particle size fpr= 1, Eq. 12) on
the contrary foilg = 1/2. Solution of the last relation results in the expressions for 1
development of particle distribution density. A considerable part of information —
quently sufficient — however, can provide even simpler equations describing the
development of moments of this distribution. The expected (average) value of ps
size and the dispersion (variance) around this average value are concerned. The
sponding procedures were dealt with in the chemical-engineering literature by,

* Functionsf; obviously depend as well on the value of paramgtand it would be therefore necessal
to distinguish them by different symbols. However, we shall not do so because it will be cleal
the context which value of this parameter will be concerned.
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King'2 To obtain the relation for the first moment, i.e., the mean value, 12).ig
multiplied by variabld and then integrated by parts with respect to this variable wi
limits from zero to infinity. We obtain the ordinary differential equation

A by -a=0 a3

Where@ denotes the mean value of distribution. The solution of Eg).i§ given by
the relation

1) =141-0] +1,0 , 14

wherel, =1(0) andlg=I() = a/B are the mean values of the initial or stationary c
tribution and® = exp ($t). It follows from Eq. (4) that for negative values ¢ the
mean value of particle size diverges and the distribution consequently will not h
stationary solution. The same holds for null valugdpthe growth of mean value is
however, substantially slower

I()=at+l, [PB=0]. (143

In case of the null value af (and positivel), the mean value of stationary solutic
is equal zero. It is evident that the relations for the first moment do not depend ¢
value of parameteg and consequently nor ag,,.

Analogously we obtain the differential equation for the second moment, relaflpr
has to be multiplied by? in this case

IO 20+ 270 - o0 =0 . <15>

Symboll—26 denotes a so-called second moment round origin. Of greater significar
the second central moment, i.e., variaoég)

a%() =1%(t) - I(t)? . (16)
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For the forms of coefficients considered by us, it is possible to write down directl
differential equation for the variance if EdQL3 is multiplied byl(t) and the relation
obtained in this way is subtracted from Ef5)(

90+ 280%() = kBP0 - a

The solution of this relation as well as the solution of Bg) {lepends on the value ©
parameterq (the solution of Eq.1(2) is given in Appendix in more detail). Therefor
we are writing here the results for each value separately along with the resultal
relations for density of solid particle distribution as far as they may be written in t
of elementary functions and we shall show that each of vajleads to another type
of distribution.

Normal Distribution ¢ = 0)

According to conditions1(l), parametek, may take only null value. A non-zero valu
of this parameter, however, leads to the often used normal distribution, and there
will be generally considered here as well. As it will be shown in Discussion in r
detail, use of an incorrect (i.e., non-zero) value of paramgmits the possibility of
existence of negative particle size.

Solving Eq. 17) for Ky # 0, we get the relation

og(t) = 0541 - ©7 + 6507 19

where = 0j(«) = k§ /2B denotes the stationary variance arithe variance at initial
instant. The respective distribution density was derived by Uhlenbeck and Orr
(cited according to refd) in the form

(15t) = f[1:1 (9),03(0)] (19)

which is the probability density of normal (Gauss) distribution, whose param—e_)er
andaoj(t) defined by Eqs14) and (L8) change generally with time. We considered he
that the initial distribution is also normal with parametgrando,,. It is apparent that
for long time intervals from the beginning of the process, fund{ijpoonverges to the
stationary density of distributiofy(l) = lim f(l;t) .

to o
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For the only admissible value of parameatgr 0 (and at null initial variancey(t)
is identically equal zero, and the probability dend{tyt) converges to the so-callel
Dirac function

;=281 -10]  Kko=0] , 0)

which takes the null values for evdrgxcept the valuit) when it grows ad infinitum.
Such a function describes the population of particles which were at the beginning
same sizd,, and this size changes with time, however, it is the same* for all part
at every time instant.

Gamma Distributiond = 1/2)

By solving Eqg. 17), we obtain in this case, after rearranging, the expression for
ance as a function of time:

a2(t) = 1(®%b + [02 - 13/b] 1)

where the average valu—e_) is defined by Eq.14) andb= 20/k%. Relation R1) is
especially simplified when the expression in square brackets is equal zero. In thi
the ratio of variance and square of mean value (i.e., square of variation coeffi
does not depend on time. The relation for the distribution density is as well rela
simple in this case,

b-1
f(1:0) = f[1:biI(D).b] = Rﬁtr) & %%E expé— %é . ©2)

Functionf(l;t) is the probability density of gamma distribution whose mean value
function of time. In case that the expression in parentheses i2Bds fot equal zero,
function f() is more complicated; its form and derivation are given in Appendix. |
apparent from Eq.2@) that for valued > 1, i.e., 21 > k%, the probability of occurrence
of negligibly small particles is very little; in cake= 1, however, functiori(l;t) has

finite and forb < 1 even infinite value when convergihtp zero. In these two cases,
is not possible, according to Fefleto consider the limit at poit= 0 as natural.

* Functiond(l) expresses the distribution of particles of negligible (theoretically null) dimension.
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The case when parameterin Egs (0) or (12) equals zero, was analyzed by Fell
(cited according to ref). The probability densitf(l;t) is for this case expressed, as
will be given in Appendix, in terms of the modified Bessel function.

Lognormal (and Other) Distributions| & 1)

The expression for variance as solution of H) {s generally rather complicated an
will not be given here. We have not succeded to find the expression for the prob:
densityf(l;t) in simple analytical form. However, it is possible to write down suc
relation for stationary distribution according to E®) by solving Eq. {2) for
ofiot = 0 (see retd)

() = etala+ 1] “T';’a 1 23

wherea = 2B/k3 andl, = a/B. Equation 23) describes the gamma distribution, howev:
with reciprocal argument (see also féf3. The expression holds only for positiv
values of parameted.

The analytical expression for the population development in time can be found
particular case ofi = 0. It is possible to show (see Appendix) that in this case
population is characterized by the lognormal distribution

f(I;t) = fyllog (1); log [@/r(t)], log r2(H)N 249

wherer¥(t) = (o5 +I_§)/I_§] exp(k3t) and Rﬁzl_p exp(—Bt). The variance is, for this case
given by the relation

03(t) = aj exp (2B — k9)t] + 15 exp(=2t) [exp (k) - 1] . 25
For the case of diminishing the particles, the relati®rr X3 has to hold.

Particular Relations for Particle Distribution in Flow System

General relation for the particle size distribution in flow system is expressed by rel
(9). Different particular expressions for functif;At) behind the symbol of integra
are given by EqgslQ), (20), (22) and @4), everywhere inserting symbak for t as it

follows from the consideration before E§).(Functionf;(At) stands for the probability
density of residence times in flow system. Comparatively extensive literature (se
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refst>19 is bestowed on this question in which a great number of relations is proy
for expressing functiorfi(). Here we shall consider only the gamma distribdfiarf
residence times of particles in flow system

f(A) = fo(AtCEC) | 26)

i.e., the equation analogous to EB2)( Symbolt denotes the mean residence time
particles in system. Symbolis the distribution parameter and its value decreases
increasing the intensity of randomness of particle motian I]. We have shown pre:
viously'3that this function can be obtained on the basis of concepts on random p:
motion in flow system which lead to the stochastic differential equations analogo
the relations given in this contribution. According to our experience, funcfién
makes it possible to describe well the experimental data on the liquid residence
in homogeneous systém

Inserting this relation into Eq9) results in expressions which, in most cases, h
to be integrated numerically, analytically can be usually described only the mome
resulting distributiorf(1).

In case that the density of particle size distribution is given by &), e shall
obtain, for the mean size value of particles leaving the flow system, the relation

le=lg+ (= 1My @7

where the expressions for the stationary and initial (here entering) mean value:
been defined at Eqlg) and p, = [c/(c + B)]°. The relation for variance is mor
complicated

2= 12/b+ (I~ 192, = KDL + (UD)] + (0B~ 12) ; 28

the expression for parametehas been defined at EQJ. Further,u,= [c/(c + 280)]°.
For the value of parameter= 1, these expressions are simplified. In this case,
distribution of residence times is described by the exponential function

F(AL) = F(ALLED) = % exp(~At) : 29

the flow system therefore behaves as an ideal mixer with the mean residende
Moreover, if we consider that particles of negligibly small size enter the system |
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distribution density is described by the Dirac functfgi,) = a(1,)), it is possible to
write, for the distribution density of particles leaving the system, the differential equ
describing even the non-stationary regime of the particle size change (see Appel

1 WA f0]  olv() f(li]  fe(ls) _ of(l;t) 20
2 al? ol T ot 30
The stationary particle distribution density at the system outletf (I lim, _ , f(1;t),
can be obtained as a solution of ordinary differential equation which we obtain s
of(l;)/ot =0 is set in Eq.30). It is shown in Appendix that fdr — o, the solution of
the ordinary differential equation obtained in this way, is identical with the solutio
integral @) where we insert from Eq29) for f(At). For the case when the particul:
form of coefficients in Eq.10) leads in the non-flow system to gamma distributi
(i.e., for valueq = 1/2), this equation can be written in the form

1 , e di(a -Bhid fe
PR a T2 GY)

and its solution in terms of integral (see Appendix) is

fl)=¢ (b) j exp(—u)u"(u- A" du , (32

where = 2B/k3, b = 2a/k2, h = 1/(0).

The simplest way when it is possible to describe fundiidnin terms of elementary
functions is this one when the subintegral funcfign) in Eq. @) is equal to the Dirac
function, introduced by relatior2Q). If we, moreover, insert here for the mean val
from Eq. (43 for |, = 0, we obtain

f(l) :J': o[l — aAt] f5(At;cltc) dAt =fg(l;cha,c) ; (33

the density of particle distribution is then again described by the gamma distribi
Parameters of this distribution are, however, in this case determined above all in
of parameters of distribution of particle residence times

RESULTS AND DISCUSSION

It was shown in theoretical part that the approach proposed in this work, i.e.,
stochastic differential equations (SDE) and the adequate diffusion equations for m
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ing the diffusion changes of particle size, makes it possible to derive some distrib!
used for the description of particle distribution (see Table I). In doing so, above a
equations were presented making it possible to describe relatively simply the evo
of these distributions in time.

Use of SDE makes it possible to express simply appropriate physical concej
stochastic change of particle size. It has been emphasized that the quantitative fc
tion of these concepts has to meet requirements of a so-called natural boundary
tion for null (or negligibly small) particle size: The deterministic component of rat
the particle size change for this limiting value has not to be negative and its ra
component has to be equal zero.

The possibility of using SDE for the description of crystal size was outlinec
Buyevich et at®when analysing the non-stationary behaviour of flow crystallizers.
adequate diffusion equation had already been written down, substantially formel
Randolph and White'®. In the works cited, however, the “diffusion coefficient” (he
designated by expressiavi(l)/2) was considered to be a positive constant, therefo
guantity independent of particle size. As it follows from comparison of Bgar(d
(12), for the null value of parameteyw?(l) = k3 = const> 0 will in this case hold.

In the paragraph on normal distributiop £ 0), however, we have said that its u
for the description of particle size distribution (see BY). i§ theoretically incorrect for
it predicts the existence of particles with “negative” size. This fact manifests |
especially significantly when describing the growth of particles with negligibly st
size at the beginning of the process.

The portion of “negative” particlgx(t) at each time instant may be expressed by
relation

TaBLE |
Types of particle size distribution in dependence on the form of coefficients of stochastic differ
equation 10)

Values of coefficients of SDELQ)

Type of distribution Note/Range of validity
q a B
0 >0 >0 normal theoretically incorrect, even
“negative” particle sizes considered
1/2 >0 >0 gamma 0,23 - I,% k%/20=0
1 >0 >0 gamma with reciprocalstationary distribution only
argument
1 0 >0 lognormal l,>0
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p(H) = f f(it) di = f NCIC O (34

where it is necessary to solve the integral numerically or on using the tabulated
of the Laplace functich.

Quantityp(t) will have null value only in case @ =0, i.e., for only one admissible
value of parametex,when the probability densitifl;t) can be expressed by means
Eqg. @0). In this case the change of particle size is strictly deterministic. This req
ment is fulfilled, at least approximately, for a very low value of variation coefficie
It is, however, evident that for the description of time evolution of particle distribu
with the initial negligibly small size, a low value of this coefficient can be reached
after a sufficiently long time interval from the beginning of the process.

This assertion is illustrated in Figs 1. Figur illustrates the time development c
population which has normal distribution at negligibly small initial particle size. Figure
shows portiomp(t) of “defective” particles (i.e., the particles which would have ne
tive size). The same time instants for which the distribution densities are illustrat
Fig. 1a, are here marked with solid points*.

1 T T T T 0.500 T T T T T
b
f p
0.75 0.375
0.50 0.250
0.25 0.125

Fe. 1
Normal particle size distribution. Parametexs= 2,3 = 1,Ky= V2, g = 0, Ip =0,0,=0.a Particle
growth in timet according to Eq.19); 1t=0.1,2t=0.2,3t=05,4t=1,5t=2,6t = 5. b Portion
of particles with “negative” size according to Eg4). Points designate portions of particles for tin
instants corresponding to curves in Fig 1

* The values of parameters in these and all further figures were chosen for the depicted depend
be as illustrative as possible, without, e.g., showing realistically the real size of particles. F
reason we do not give the units of these parameters in figure captions.
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The lognormal distribution, which is often considered to be only empirical, doe:
suffer from this defect, i.e., from predicting the negative values of particle size. |
ever, already Kolmogord¥had shown on the basis of stochastic approach to the
scription of particle disintegration (e.g., grinding) that the density of their .
distribution may be expressed in terms of lognormal distribution which will be wri
down here by the relation

f(1:t) = fy(log (1);PL Q) . 35)

It is reported that this distribution safisfactorily describes the experimental data
sufficiently long time intervalg from the beginning of the process. Reason of t
limitation of validity follows from the comparison of distribution parameters in BS). (
with those of our proposed relatioR4f. As it is stated in Appendix, Eq3%) holds
only in case that for Eq24), the non-equalities are fulfilled

K3t>> log(ogi3+1) 1 OB + kPH0>> log [1F(03+19¥2)] . (36)

i.e., for such values dfwhen it is possible to neglect the effect of parameters of in
distribution (then, obviously? = -(B + 1/2k3) andQ =K,)). Equation 24) proposed by
us can therefore be considered more general than the distribution proposed by F
gorov.

The lognormal distribution proposed here is not too suitable for describing the
ticle growth, i.e., for the case wh@n< 0 (and a = 0) for, as it is evident from relation
(14) and @5), its parameters diverge with time. It does not make it possible to des
the growth of particles of negligibly small size as well. As one can see fron1@g.
the contributions K(t) for particle sizd_(t) — 0 are negligibly small as well.

The proposed distribution density (EQ4)) is, however, suitable for the descriptic
of diminishing the particles (at = 0 andp > 0) for still at the validity of condition
2B > k3 (see note under Eq29)), it converges with increasing time to the statione
solution — the Dirac functiol(l), i.e., it expresses the fact that all the particles w
after elapsing a very long time from the beginning of process, negligibly small.

In Fig. 2, the time course is shown of diminishing the particles from the initial
tribution density represented by the curvetferO.

The gamma distribution is free from the failures which were pointed out with the
above-mentioned distributions. The solution of Bg) for the value of parameter= 1/2
results, admittedly, generally in higher transcendental functions (see relaig)nar (
(A9 in Appendix), however, it is necessary to emphasize that in case of negli
initial particle dimensions, the solution has always the analytical form of probal
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density of gamma distribution (whose parameters, however, change with time) fc
further time instant (see ERZ). In case that the initial particle distribution is gamr
distribution with the given parameters, the process of changes of particle size m
conducted so that the variation coefficient of distribution should remain unchai
Examples of the time change of particle density during their growth from a negli
value are given in Fig.&88 The curve fot = 8 represents practically stationary distributic

It is still necessary to point out the fact that the gamma distribution is able t
scribe even a non-zero probability density (in case of parametér<01 for particles
of negligible dimensions. Further it is known that according to central limiting theo
the form of gamma distribution for high values of parambtapproaches the norms
distributiont’. On the other hand, when valuetofpproaches unity (from the right), |
is possible, by means of the gamma distribution, to approximate the experimn
Rosin—Rammler distributidnwherey = 1 +¢:

f(l) = lim (1 +€)(U1)* exp FU)4N . @37)
€0+

It should be noted here that by the substitution of the independent variable #P)Ec
with its y-th power and after some rearrangements we obtain a relation for the trar
probability density function of the particle size in the fdht) = f5(x;1.0) | d/dl| . The
dimensionless variabbeis a function of the particle sizeand timet

(N (b + W)IT (B)]Y
(/1) -1]O+1

x=x(l,t) = 38

Fic. 2
Density of lognormal distribution of particle size
— diminishing particles in timeaccording to Eq.24).
Parametersa = 0, = 3,k,=0.5,9 = 1, Ip= 2.01,
0,=1.07,1t=0,2t=0.2,3t=0.4,4t=0.6,
5t=0.8
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At certain values of the parametgrandb, the preceding relation can be simplifie
and the functiori(l;t) enables (in an analytical form) to describe time evolution of sc
particle size distributions (most of them were already discussed in this paper):

1. y = 1 the gamma distribution,

2. b =1 the Rosin—Rammler distribution,

3. y = -1 the gamma distribution with reciprocal argument,

4.y =2,b =1 Raleigh distributiof?.

The solution of Eq.12) for g = 1/2 and for the case when parametés equal zero
(thus, for a negative value of rate of change of particle\glze= {31, wheref3 > 0), is
to be expressed by means of the modified Bessel function. It may be used even
case of diminishing the population, i.e., e.g., for dissolving particles. It is so be«
this solution does not keep norm as it is apparent after its integration over the
range of variablé (see Appendix)

A© O
(1- G))D’ 39

J'f(l ta)d=1- exp[-l—

wherel, is the initial size of all particles. The value of this integral from the transi
function should be equal unity, which would physically mean that the number of
ticles of population does not vary during the process. In this case the size of popt
decreases with time*. The boundary condition Ifer O is here a so-called absorbir
boundary-*C.

The function which describes gamma distribution — see ), i very flexible and
can easily be, e.g., modified for expressing distributions determined experimenta
sieve analysis. Multiplying the probability density by the third power of variabded
for the description of so obtained experimental data, does not change in princip
analytical form of the functidn Therefore, it is possible, at least from theoretical pc
of view, to recommend the gamma distribution as very suitable for the descripti
particle distribution and its time changes.

The record of changes of particle size in terms of stochastic differential equgtic
is suitable also for direct stochastic modelling of the process, as it is apparent from F
In this figure, the courses of the same functions are depicted as ing-igowsever,
they are obtained by numerical modelling of the processes according to stochas
ferential equation(0) with the value of parameter= 1/2.

As far as the initial particle size is determined by gamma distributionfylg),= fg( Ip,b/l ,b), we
obtain the expression 1 M[©/(1 -G)b + 1] by integrating the product 6f0 and the right-hand
side of Eq. 89) with respect td,, on the interval [@»). Even in this case the diminution of number
particles therefore takes place.
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The problems connected with this way of calculating the probability density of
chastic functions, above all in case when coefficig)tin the stochastic term depenc
on the sought stochastic functib(t) had been discussed forméfdy* In our case we
have used the simplest — Euler — method of integration of the following equation

AL(t) = [0 — BL(1)] At + K,[L(H)]Y2 AW) . 40

For the time step\t = k, the increment of the Wiener process was expressed by
relation AW(t) = Gy, Vk, whereGy, is the stochastic quantity normally distributed wi
null expected value and unit variance. It was generated by means of the same r
number generator as in previous pape?*® trajectories of random proce&gt) with
time stepk = 0.0001 were calculated.

The outlined approach will be of significance above all in the case when it is ne
ary to consider even the processes of agglomeration, or diseggregation of particle
the case when the particle size changes in steps). Then it would be necessary t
plement the stochastic differential equation by another random term containin
generalized Poisson proc@sgich describes these step changes. Even in this case
possible to write down the adequate integral-differential equsfidorthe sought den-
sity of particle size distribution, its analytical solution, however, is not usually poss
Rather a different approach to this problems (simulation by the Monte Carlo meth
reported by RamkrishA&>.

Further it was shown that as far as the time development of particle populati
non-flow system is known, the patrticle size distribution in a flow system is to be d

2.5

15

0.5

0

0 1 2 3 4 , 5
Fic. 3
Density of gamma distribution of particle sizes — particle growth in tinarameterso = 2,3 = 1,
K;=0.5,q= 1/2,Ip= 0,0,=0,1t=022t=04,3t=06,4t=1,5t=8.alnterms of Eq.
(22), b stochastic modelling according to E40Y
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mined to advantage by means of randomization of time variable (se®)Egn(the
assumption that the residence time distribution of particles in the system is kno
well.

In case the density of particle size distribution in non-flow system is described b
gamma distribution, and the flow mixer is ideally stirred, B3p) (was derived. It is
possible to prove (see Appendix) that providing the values of paranfietardk; in
this relation approach zero so that simultaneodshegmains a positive constant, th
expression on the right-hand side of E2R)(converges to functiofy() in Eq. @3) for
c =1, i.e., for the exponetial distribution of particle sizes

exp(-Ifita)
ta

fl) = =1]. @1)

It might be shown as well that for non-zero values of parametensdp (8 > 0), an
“excess” of particles of small sizes takes place with respect to the number of
particles calculated by means of E41)in caseh >b — 1 (i.e., for comparatively shor
mean residence times in system), and their “shortage” in the oposite case. This
documented in Fig. 4. The exponential curves represented in terms oflEq¢dgsh
line) and converging Eq3P) to it for low values off andk; (and therefore high andb)
practically coincide. We assume that the method proposed here makes it poss
explain more suitably the existence of “excess” of small particles than the presun
of dispersion of particle growth rates introduced by Larson ¥t al.

Further it was stated that as far as the ideally stirred system is concerned
possible (with negligibly small size of entering particles) to describe the particle
distribution in terms of the same differential equation as in non-flow system wl
however, contains, in addition, the additive term directly proportional to the so
function (see Eq.30)).

If we setw() =0 in Eqg. §), the term in Eq.30) containing second derivative disaf
pears (i.e., the term characterizing the random changes of particle size). We obté&jin |
i.e., the well-known population balari¢e The stochastic differential equatio®) (then
turns into an ordinary differential equation which describes only the change of pe
size without action of random effects. For instance, the right-hand side o1 Bqds (
then identically equal zero, and the variance of distribution (with zero initial va
then remains zero during the whole further process.

From the above-mentioned follows, that the population balance as a first-orde
tial differential equation, is unable to describe the random development of pa

* Wend?® pointed out the relation between the randomization of time parameter and the solut
population balace in a paper dealing with flow crystallizers.
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population in a non-flow system (unless, e.g., we consider the rate of size chatl
boundary condition as a stochastic function of time), and that the particle size dis
tion in a flow system is conditioned only by residence time distribution of these
ticles. For a more detailed description of population development it would be ther
suitable to complete Eq4) by a “diffusional” term. This fact was pointed out
Randolph and Whit€ who recommended such a formal complementing so that
“diffusivity” — as we have already stated — considered as a constant. The apr
proposed by us, i.e., use of SDE, this diffusion term directly implies, from the pre
ing considerations of boundary conditions folloving that this “diffusivity” has to

pend on particle size, namely, that its value has to converge to zero (from the rig
diminishing the size to infinitesimal dimension.

CONCLUSIONS

1. The application of stochastic differential equations was proposed to the de
tion of changes of solid particle size during crystallization, polymerization, abre
and the like; the adequate diffusion equations then make it possible to describe tf
development of population of these particles.

2. The patrticular forms of coefficients in these equations were proposed whict
to the description of time development of populations for the most often used dis
tions (normal, lognormal, gamma distributions).

3. This approach was employed even for the flow system; the methods of con
tion of density of particle size distribution were proposed on the basis of knowled
distribution of particle residence times in this system and simultaneous knowled
density of their size distribution in non-flow system.

4. It was shown that the population balance in the usually used form4qloes
not make it possible to simply describe the time development of these populatic

FG. 4
Density of particle size distribution in flow ideally
stirred system. Solid line$-3 according to Eq.32),
dashed line according to Eql1). Parameters\ =
1.02,ta = 1A; 1b=50,h =5;2b = 51,h = 50;
3b=5h=50
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non-flow systems, and therefore its complementing was proposed by the “diffusi
term with “diffusivity” which is a function of particle size.

APPENDIX

Solution of Equation (12) for q = 1/2

All the terms of Eq.X2) are divided by paramet@ and new variables = fit; z= Al =
(2B/k2)| are inserted:

O ob-2h 2k g 1
ot 0z 02 b>0l - A

The stationary solution of this equation (B0t = 0) is
f(2=CZlexp(-2 . (A2

The value of integration consta@t= 1/ (b) is calculated from the condition that func
tion fy() should be the probability density and its integral in limits from zero to infir
has to equal unity. A general solution of E4LY will be sought in the form

=2 exp Hz- VD] ¥(@ | A3

wherev = const and/ is the sought function of variabie After inserting into Eq.A1)
and rearranging we get the relation

Py Ay
Zd22+(b z)dZ vw=0, A4

whose solution is the equatign= A®(v,b;2) + BAPd(v —b + 1,2 —b;z), whered is
the so-called confluent hypergeometric functforintegration constanB has to be
equal zero for otherwise the solution would not converge to the stationary sol
according to Eg.A2) on growingt ad infinitum. It is further well-know#¥that forv =
n =0, -1, -2, -3..., function ®() turns into the generalized Laguerre polynom
LE-D(2) so that the single partial solutions of E44) arey,(2) = A,LP~Y(2) and fur-
ther the general solution of EcAY)
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f(z10z,) =2 exp(-2) Y ALY (2 exp(-m) . (A5
n=0

ConstantsA, are determined from the initial condition; for the transitive probabi
density has to hold lim,f(z1| z) = 8(z-z,). Therefore we multiply both sides b
L®-D(2) and integrate with = 0

| ) &z-z)LE(2) dz= % A ) 21 exp(-2)LO DL V(Z) dz . (AB)

With regard to the orthogonal properties of the Laguerre polynomials, the value of in
on the right-hand side is equal zero winea n, in the opposite case it is equigb + n)/n!
(ref2’). For the integration constants therefore holjs= LY~ Y(z,)n!/I (b + n). After
inserting these relations into Ed\5), we finally have the general solution

f(z1lz) =2 exp(-2) 5 r (bni- - LED(Z)LE (2 exp(-nr) . (A7)
n=0

The expression on the right-hand side can be summ&tang after inserting the
original variables and rearranging we get the general relation for transitive probe
density

p-1)/2 U2
o1 OAM +1,0)0  DAUL©)Y20
f(lity) = Bﬁg exp%}- ) Bb_lg o Sl—e . (AB)

Symbol| stands for the modified Bessel function. In case that the initial probat
density describes the gamma distribution as well in the fgitgh=fg(l,; g/I .9), where

I, is the mean value of initial distribution and parameterb, we obtain after integrat-
|ng indicated by Eq.7), the general relatich

f(1;t) = fo[l;M(L - ©),6](1 - H)9D[g bAIH/(L - ©)] (A9)

whereH = Al ©/[A© +g(1 - 0)]. In caseg = b, function® is simplified: ®(b,b;x) =
exp &), and Eq. A9) turns into Eq. Z2).

Feller (cited according to réf) presents a solution for the particular case when0
and consequentlyy = 0. Equation A8) is in addition rather simplified regarding th
relation|_y(x) = 1,(x) (ref2®). If we insert this Feller solution into the integral in E38)(
and use the dimensionless variables Al/(1 — ©) andu, = Al,©/(1 —©), we obtain
after integrating®
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J’: (u/u) ™2 exp F(u + up)]l4[2(uuy)¥?] du = u, exp(-u,)®(1,2u,) (A10

From the definition of confluent hypergeometric function follows thét,2x) = [exp
(X) — 1]k After rearranging the right-hand side of EA1Q) with regard to the last
relation and backward inserting we get the solution of integral in3y. (

Solution of Equation (12) forq =1 ard =0

ooty 1 ,0%)
a P 222 TV ALY

As it is reported by Sveshnik&y Eq. (A11) is to be solved easily by exchanging va
ables when we set= log(l) + (k3 /2 + B)t andt =k3t. Then we obtain the well-knowr
diffusion equatiordf'/dt — 9°'/0x* = 0, whose fundamental solutfdrf'(x,T| x,) = fiy (X%, T)

is backward inserted into. We get the relation for the transitive probability density

fi(l;td ) =fyllog I; logl, - (K32 + B)tK3t/ . (A12

As an initial condition we choose the probability density of lognormal distribu
fo(lp) = fllog I ;log [I(O)/r(O)] log r2(0)]llp, wherer? and| are defined behind Eq24).
After inserting from the last two relations into E@) &nd after integrating, we obtail
Eqg. 24). If we insert into expressions for the two parameters in_E4). ffom the
definition relations behind this equation, we get I§g/f(t)] = log [17a? +12)"7] -
(B + /23t and log {X(t)] = log [07/13 + 1] + k3t, where follow non-equalities36) from.

Recording and Solving the Relations for Flow System

By analogy with the monograph by Carslaw and J&&ggris possible to prove, by
direct substitution, the statement that if we know the solutigm,t) of the partial
differential equation

1 PWPGD] _ OBXD] | 3G
2 e ox G0 =5

for A = 0, then the solutiog,(x,t) for A# 0 can be found by means of the relation

=0 (A13)
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t
0(xD) = A [ exp(-AIE(x) ds+ Golkt) exp(-A) (<0 =0] . (A19

For A > 0 andt - o, the last term on the right-hand side of the equation disapp
which proves the identity between the solution of Bf) é&nd of integral §) for f;= A
exp (-At) [A = 1k] andt - . The condition of validity written in square bracke
behind Eq. A14), however, sets a limit to this statement just to the case of neglic
value of initial particle sizes. When solving E1), we proceed by analogy with th
solution of Eq. Al); we get Eq.A4), wherev = 1k Its solution is an expression whic
contains a confluent hypergeometric function, however, this time in the form prog
by Tricomf’

f(1) = hr (h)fo(1;b/1,b)W[h,b; (bI/1)] (A15

where functionW is defined in List of Functiond,=a/B, b=2a/k? andh = 1/(3%).
Equation Al5) is further rearranged so that the functig() is written under the sym:-
bol of integral in function¥, and the integration variable changed. So we obtain
integral in Eq. 82).

From the definition of the gamma function follows that for everyb — 1, relation
(32) changes to exponental functitl) = A exp (Al). On converging the parametel
B andk, to zero,(1/Bt) = (2a/k3) where the relatiorfl/at) = (2B/k3) = A follows from,
which proves the statement before EH)( It further follows from the definition of the
gamma function that the value of integral for negligibly small particle size is equé

£(0) = Ahl"(b — 1)/ (b) = Ah/(b - 1) . (A19)

Inasmuch as the value of integral from functfgit) over the entire range of varialdle
equals unity, it proves the statement given behind £4). (

LIST OF FUNCTIONS

Probability density of normal distribution:

_ 1 0 (x —x)20
fn(xx,0%) = Vo762 eXpB’( 20;) E : @

Probability density of gamma distribution:
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fs(xgh) E%(gx)“-l exp(-gx) - )

Modified Bessel function:

iy (a2
'P(X)‘I;k! Fk+p+1) ©
Generalized Laguerre polynomial:
n
LED@=r(n+b) 2" ©)
n & Fk+bk (n-k! °
Gamma function:
(o) =[ x"*exp(-x) dx . ©
0

Confluent hypergeometric function:

o e F@+n) rpx
dJ(a,b,x)_;)—r(a) Fb+nynt ()

Confluent hypergeometric function (by Trico)i

W(c,bx) = %J’: exp(-x9sTL(1+sPclds [>0,c>0] . ©

LIST OF SYMBOLS

a parameter of gamma distribution with reciprocal argument in Z3).[& = 2B/k3]
b parameter of gamma distribution in EG2) [b = 20/k{]

c parameter of gamma distribution of residence times in ). (

F distribution function

f probability density (of particle size distribution);L

G stochastic quantity with normal distribution

h parameter in Eq.3Q) [h= 1/61]

L(t) characteristic dimension (size) of particle (stochastic time function), L

| particle size (variable of distribution), L

N number of particles
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OP<®Rss<<~"T"2,00T T3

Q > X
NN
o)

N
el

density of particle population,

parameter in Eq.36), T

portion of particles of “negative” size

parameter in Eq.36), T2

parameter characterizing particle size distribution

parameter of lognormal distribution in EQ4{

time, T

suspension volume in system? L

rate of change of particle size, EIT

Wiener process, 2

random rate contribution, L~¥?

constant rate of particle growth, 1T

coefficient characterizing rate of change of particle sizé, T
exponent in Rosin—Rammler distribution

parameter in Eq.307) [e =y - 1]

time factor in Eq. 14) [© = exp (Bt)]

coefficient characterizing random rate of change of particle siz&Tt'/2
scaling parameter of gamma distribution in B) (A = 2p/k{], L*
variance of particle size,?L

Indexes and other signs

cCl*~*—q40oT ZO™O

N

o0k~ W

referred to outlet stream

referred to flow system

referred to gamma distribution

referred to normal distribution

referred to beginning of process
referred to stationary state

referred to whole system

referred to transitive probability density
referred to empirical distribution

mean value of quantity
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