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To the description of changes of solid particle size in population, the application was proposed of
stochastic differential equations and diffusion equations adequate to them making it possible to express
the development of these populations in time. Particular relations were derived for some particle size
distributions in flow and batch equipments. It was shown that it is expedient to complement the
population balances often used for the description of granular systems by a “diffusion” term making
it possible to express the effects of random influences in the growth process and/or particle diminution.
Key words: Particle size distribution; Population balances; Stochastic differential equations.

The operations often occur in chemical engineering connected with the solid particle
growth (crystallization, polymerization) or with their dimension diminution (grinding,
crushing, dissolution). In vast majority of cases, the size change of such particles can
be considered as a non-stationary stochastic process leading to their certain distribution
both as to their size and as to their shape. In the theoretical description of such systems,
the shape factor of a particle of the given population is usually considered unchanging.
This assumption makes it possible to choose some particle length dimension to be its
basic characteristic. During the above-mentioned operations, even the – in general, ran-
dom – motion of these particles takes place, so that the further characteristics of the
process will be position and momentum of their centre of gravity.

In considerations aiming at practical applications, however, the last two quantities
are not, as a rule, considered, and a uniform particle distribution is usually assumed in
working space or in the inlet and outlet fluid streams which carry along1 the particles.
The characteristic particle dimension L(t) which may generally be considered as a sto-
chastic time function is then the only defining factor when describing the particle “behaviour”.
This linear dimension will be called the particle size in further text. As a general characteristic,
distribution function F(l;t) is introduced for the stochastic functions in probability the-
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ory as probability P that the particle size will be at instant t lower than the given value
of variable l,

F(l;t) = P 

L(t) < l


  ,  (1)

or, as the case may be, the first derivative of this function – the probability density

f(l;t) = 
∂F(l;t)

∂l
  . (1a)

The term probability density will sometimes be replaced by the term particle dis-
tribution density in further text.

For a fixed time instant t = t1, the distribution function approximates the particle size
distribution in some set (population)

F∗(l) ≡ F(l;t1) ≈ 
N


L(t1) < l




NT
      [NT ≡ N


L(t1) < ∞


]  , (2)

i.e., as number N particles smaller than l out of the set considered to the total number NT of
particles in the same set. The relation holds the more accurately the larger is NT. In this
way defined function or its probability density f*(l) ≡ dF*(l)/dl is then approximated by
some functions derived in the probability theory, or if need be, by some empirical
distributions. For the description of stationary distributions of solid particles, one
usually employs1–3 the probability density of normal distribution fN(l;L

__
,σ2), of lognormal

distribution fN(log l;log L
__

′,log2 σ′)/l, gamma distribution fG(l;a/b, a + 1), from the em-
pirical relations, most often the Rosin–Rammler distribution* γ(l/L

__
)γ–1 exp [–(l/L

__
)γ]/L

__
. 

For the description of development of the solid particle population, Randolph and
Larson4 used the population balance (see also ref.5) and derived a first-order partial
differential equation whose solution is a so-called solid particle population density,

n(l;t) = f(l;t) 
NT

V
  , (3)
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where V is the suspension volume in the system in which the considered population
occurs. Authors4 showed that under some simplifying assumptions, the population balance
for this system can be written in the form

∂n(l;t)
∂t

 + 
∂[v(l)n(l;t)]

∂l
 + 

n(l;t)
t
_  = 0  , (4)

where symbol v(l) stands for the rate of change of particle size and t
_
 the mean residence

time of particles in system, if the system considered is flow one (in a non-flow system,
evidently, the mean residence time grows limitlessly, and the last term is equal to zero).
For constant values of NT and V, the population density is directly proportional to the
probability density of particle size distribution, and Eq. (4) is consequently identical
even for the function f(l;t).

The aim of this work is the effort to describe the particle size changes from a uniting
point of view; we shall consider these changes to be stochastic process of diffusion type
(see, e.g. refs6–8). We shall show simultaneously that the approach proposed here makes
it possible to describe the chronological development of populations, sometimes even
only by means of elementary functions. The partial results attained in this direction by
other authors will be referred to at the respective places in discussion*.

THEORETICAL

The changes of solid particle size will be described first in a non-flow stirred equip-
ment, i.e., in a bounded system in which the particles can freely move. Let us consider
a single particle and accept these assumptions as to the changes of its size:

1. Neither on changing the particle size, nor during its motion, a change of its shape
occurs.

2. The particle in the system neither arises, nor decays.
3. The initial particle size is generally random and can be determined by the initial

size distribution.
4. The change rate of particle size consists of the deterministic and stochastic con-

tribution; the discrete changes of its size are here excluded. Both the contributions can
be generally a function of particle size but not explicitly of time.

The given assumptions determine the size distribution of the particle considered at
any time instant count from the beginning of process. From the law of averages follows
that this distribution makes it possible to describe the size distribution of particles of

538 Kudrna, Hasal:

Collect. Czech. Chem. Commun. (Vol. 61) (1996)

* The paper submitted has largely the formal mathematical character. Therefore, hereinafter we shall
not judge, e.g., the physical meaning of particular parameters in relations written.



identical shape the more accurately the greater the population of these particles is. The
given assumptions, therefore, make it possible to determine the particle size distribution
of this population.

The first assumption defines the shape invariability of the particle. According to the
second assumption, the processes of arising and decaying the particle are excluded.
This limitation requires the initiation of the process of particle growing by “seeding”.
The distribution of “seeding” particles, i.e., the initial size distribution density is deter-
mined by the third assumption. (As the initial distribution we shall often consider even
the set of particles of a single negligibly small – i.e., practically zero – size.) The fourth
assumption excludes step changes of size, therefore, the processes of agglomeration or,
on the contrary, disaggregation. Random changes in size are then only of “diffusional”
character and are determined by the so-called Wiener process (see, e.g. refs6–8). This
assumption requires as well that the conditions under which the change of particle size
occur (e.g., the stirring intensity) should not change in time during the process. In
opposite case, both the above-mentioned rate contributions might be an explicit func-
tion of time.

On the basis of the above-mentioned assumptions, it is possible to describe the sto-
chastic change of particle size L(t) in terms of the so-called stochastic differential equa-
tion6–8

dL(t) = v[L(t)] dt + w[L(t)] dW(t)  , (5)

where the first term on the right-hand side stands for the deterministic and the second
term the stochastic contribution to the particle size change. Symbol W(t) stands for the
Wiener process (see, e.g. ref.6), which is a stochastic function of time with normal
distribution, zero expected value and the dispersion equal to time interval from the
beginning of process6. Ordinates of this process can, with the same probability, take
positive and negative values. This property sets certain limits to the coefficients in Eq. (5):
They must be apparently such that the length dimension of particle should have a posi-
tive value at each instant.

In the literature (see, e.g. refs6,7), a so-called transitive probability density ft(l;t|lp;tp)
is defined for process L(t) which characterizes the probability that the particle size will
have a value near to l at instant t on condition that at the initial instant t = tp, it was
equal lp. It is proved there that function ft() is the solution of the partial differential
equation

∂ft
∂t

 + 
∂[v(l)ft]

∂l
 − 

1
2

 
∂2[w2(l)ft]

∂l2
 = 0  . (6)
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This equation requires generally one initial and two boundary conditions in interval 0 ≤ l < ∞.
For the upper limit of the interval, the condition liml→∞ ft(l;t|lp;tp) = 0, which means that
the particle size is not generally limited from above, however, the probability of its
growth ad infinitum is zero. In case of the lower limit (i.e., for l = 0), the situation is
more complicated. Gichman and Skorokhod8 affirm that in case of a so-called natural
boundary (that is such which cannot be reached by the given process), conditions w(0) =  0
and v(0) ≥ 0 have to hold here for coefficients of Eq. (5).

In agreement with the Feller theory9,10, it is not necessary to consider the boundary
conditions at all in case of the natural boundary for process L(t) is not able to reach this
boundary and consequently liml→0+ ft(l;t|lp;tp) = 0. However, from this theory simulta-
neously follows that for the non-zero value of probability density at point l = 0 (i.e., for
null particle size – this situation may occur above all when w(0) = 0 and v(0) = 0), the
situation is not so simple. The boundary condition for l = 0 will then depend on the
actual form of coefficients v(l) and w(l).

In our further considerations, we shall mostly assume the natural boundaries. The
opposite case (i.e., other type of bounds at point l = 0) will be always discussed separa-
tely, by the term zero-size particle being understand the particle whose dimensions are
negligibly small.

The initial condition is in agreement with the third assumption given and it may be
generally written in the norm form as the probability density fp(lp;tp) which gives the
initial particle distribution. For a non-flow system we shall always consider that tp = 0
and omit this designation in further records, i.e., we shall write, e.g., fp(lp;0) = fp(lp).
Equation (6) is linear with respect to ft(), and its solution will be therefore as well the
integral

f(l;t) = ∫  
0

∞
ft(l;tlp) fp(lp) dlp  . (7)

The probability densities in this equation may be understood in this way: Function ft()
gives the particle distribution at instant t on the assumption that at the initial (zero)
instant, they all were of the same size lp. Function f() characterizes their distribution at
instant t for the case when their initial distribution is given by function fp(). For values t
growing ad infinitum (i.e., practically for a great time interval elapsing from the begin-
ning of the process), it is possible to determine the stationary distribution (as far as such
a distribution exists) by the relation

fs(l) = lim
t→∞

 f(l;t)  . (8)
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Let us go over to the case of flow system and complement the above-mentioned
assumptions with others:

5. The number of particles passing throug the system along with the entraining liquid
is invariable in time. The distribution of their sizes ffp(lp) at the system inlet is not a
function of time.

6. The particle residence time in the system, i.e., time interval ∆t between the mo-
ments of input and output, is, in general, a stochastic quantity whose probability density
ff(∆t) is given and does not vary with time.

The two assumptions along with assumption 4 express the fact that the system func-
tions under steady conditions, as a matter of fact, above all at constant medium flow
rate, and under constant stirring regime. The coefficients in Eqs (5) and (6) will there-
fore be nor in this case an explicit function of time, and as far as the operation condi-
tions in the flow and non-flow system considerably do not differ, they may be for both
these cases considered identical.

In the theory of stochastic processes8, it is further proved that unless the above-men-
tioned coefficients are functions of time, the transitive probability density has a station-
ary form to the effect that it does not depend on time instants t and tp individually but
only on their difference: ft(l;t|lp;tp) = ft(l;t – tp|lp) = ft(l;∆t|lp).

On the basis of these considerations and on the assumption that the initial distribu-
tion in the non-flow and the inlet distribution in the flow system are identical (i.e., that
fp(lp) ≡ ffp(lp)), the function f(l;∆t) defined by Eq. (7) can be understood as the prob-
ability density characterizing the distribution of particles leaving the system with the
same residence time ∆t.

The density of particle size distribution in the outlet stream fe(l) are then determined
in terms of a so-called randomization of time parameter (see, e.g. ref.11)

fe(l) = ∫  
0

∞
f(l;∆t) ff(∆t) d∆t  , (9)

where ff(∆t) is the probability density of residence time distribution in flow system.
The procedure outlined makes it possible to compute generally the particle distribu-

tion in flow system; we shall show in Discussion that it is, in a certain respect, a genera-
lization of population balance (4). The particular form of the coefficients in Eq. (5) has to
be chosen on the basis of physical insights into the given process. The general solutions
of corresponding Eq. (6) under the suitably chosen initial and boundary conditions, or
if need be, the subsequent randomization (9) are, of course, sufficiently complicated,
and therefore it is usually necessary to employ suitable numerical methods. In next
paragraph, however, we shall show that some distributions used in practice or at least
lower moments of these distributions can be obtained by analytical procedures.
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Particular Relations for Particle Distribution in Non-Flow System

Further we shall present only such distribution densities of solid particle or moments of
these distributions which may be expressed in terms of elementary functions. The deri-
vations of some relations and the results which contain higher transcendental functions
are given in Appendix.

In concretizing the form of coefficients in Eq. (5), we shall assume that they are such
that they are, either in Eq. (5) or in Eq. (6), a linear function of particle size. Equation (5)
takes then the form

dL(t) = (α − βL(t)) dt + κ2q[L(t)]q dW(t)       [q = 0, 1/2, 1]  . (10)

From the discussion of boundary conditions of Eqs (5) and (6) it follows that it is
necessary to delimit the range of validity of coefficients α, β, and κ2q in Eq. (10). The
requirement of natural boundaries for L(t) = 0 leads to these conditions

α ≥ 0  ;   −∞ < β < +∞  ;   κ0 = 0  ;   −∞ < κ1,κ2 < +∞  . (11)

Further we shall show that only some combinations of these parameters are suitable for
the description of changes of particle size. From Eqs (5) and (6) follows that the partial
differential equation for transitive probability density* ft(l;t | lp),

∂ft
∂t

 + 
∂[(α − βl)ft]

∂l
 − 

1
2
 κ2q

2  
∂2(l2qft)

∂l2
 = 0 (12)

corresponds to relation (10).
It is apparent that Eq. (10) is linear with respect to particle size for q = 1, Eq. (12) on

the contrary for q = 1/2. Solution of the last relation results in the expressions for time
development of particle distribution density. A considerable part of information – fre-
quently sufficient – however, can provide even simpler equations describing the time
development of moments of this distribution. The expected (average) value of particle
size and the dispersion (variance) around this average value are concerned. The corre-
sponding procedures were dealt with in the chemical-engineering literature by, e.g.,
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King12. To obtain the relation for the first moment, i.e., the mean value, Eq. (12) is
multiplied by variable l and then integrated by parts with respect to this variable within
limits from zero to infinity. We obtain the ordinary differential equation

dl(t)
___

dt
 + βl(t)

___
 − α = 0  , (13)

where l(t)
___

 denotes the mean value of distribution. The solution of Eq. (13) is given by
the relation

l(t)
___

 = l
_
s[1 − Θ] + l

_
pΘ  , (14)

where l
_
p ≡ l(0)

___
 and l

_
s ≡ l(∞)

____
 = α/β are the mean values of the initial or stationary dis-

tribution and Θ ≡ exp (–βt). It follows from Eq. (14) that for negative values of β, the
mean value of particle size diverges and the distribution consequently will not have a
stationary solution. The same holds for null value of β; the growth of mean value is,
however, substantially slower

l(t)
___

 = αt + l
_
p       [β = 0]  . (14a)

In case of the null value of α (and positive β), the mean value of stationary solution
is equal zero. It is evident that the relations for the first moment do not depend on the
value of parameter q and consequently nor on κ2q.

Analogously we obtain the differential equation for the second moment, relation (12)
has to be multiplied by l2 in this case

dl2(t)
____

dt
 − 2αl(t)

___
 + 2βl2(t)

____
 − κ2ql

2q(t)
____

 = 0  . (15)

Symbol l2(t)
____

 denotes a so-called second moment round origin. Of greater significance is
the second central moment, i.e., variance σ2(t)

σ2(t) = l2(t)
____

 − l(t)
___

2  . (16)
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For the forms of coefficients considered by us, it is possible to write down directly the
differential equation for the variance if Eq. (13) is multiplied by l(t)

___
 and the relation

obtained in this way is subtracted from Eq. (15),

dσ2(t)
dt

 + 2βσ2(t) = κ2q
2 l2q(t)

____
  . (17)

The solution of this relation as well as the solution of Eq. (12) depends on the value of
parameter q (the solution of Eq. (12) is given in Appendix in more detail). Therefore
we are writing here the results for each value of q separately along with the resultant
relations for density of solid particle distribution as far as they may be written in terms
of elementary functions and we shall show that each of values q leads to another type
of distribution.

Normal Distribution (q = 0)

According to conditions (11), parameter κ0 may take only null value. A non-zero value
of this parameter, however, leads to the often used normal distribution, and therefore it
will be generally considered here as well. As it will be shown in Discussion in more
detail, use of an incorrect (i.e., non-zero) value of parameter κ0 admits the possibility of
existence of negative particle size.

Solving Eq. (17) for κ0 ≠ 0, we get the relation

σ0
2(t) = σ0s

2 [1 − Θ2] + σp
2Θ2  , (18)

where σ0s
2  ≡ σ0

2(∞) = κ0
2 /2β denotes the stationary variance and σp

2 the variance at initial
instant. The respective distribution density was derived by Uhlenbeck and Ornstein
(cited according to ref.10) in the form

f(l;t) = fN[l;l(t)
___

,σ0
2(t)] (19)

which is the probability density of normal (Gauss) distribution, whose parameters l(t)
___

and σ0
2(t) defined by Eqs (14) and (18) change generally with time. We considered here

that the initial distribution is also normal with parameters l
_
p and σp. It is apparent that

for long time intervals from the beginning of the process, function f() converges to the
stationary density of distribution fs(l) = lim

t→∞
 f(l;t) .
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For the only admissible value of parameter κ0 = 0 (and at null initial variance), σ0(t)
is identically equal zero, and the probability density f(l;t) converges to the so-called
Dirac function

f(l;t) = δ[l − l(t)
___

]       [κ0 = 0]  , (20)

which takes the null values for every l except the value l(t)
___

 when it grows ad infinitum.
Such a function describes the population of particles which were at the beginning of the
same size lp, and this size changes with time, however, it is the same* for all particles
at every time instant.

Gamma Distribution (q = 1/2)

By solving Eq. (17), we obtain in this case, after rearranging, the expression for vari-
ance as a function of time:

σ1
2(t) = l(t)

___
2/b + [σp

2 − l
_
p
2/b]  , (21)

where the average value l(t)
___

 is defined by Eq. (14) and b ≡ 2α/κ1
2. Relation (21) is

especially simplified when the expression in square brackets is equal zero. In this case
the ratio of variance and square of mean value (i.e., square of variation coefficient)
does not depend on time. The relation for the distribution density is as well relatively
simple in this case,

f(l;t) = fG[l;b/l(t)
___

,b] = 
b

l(t)
___

Γ(b) 




bl
l(t)
___




b−1

 exp 



− 

bl
l(t)
___



  . (22)

Function f(l;t) is the probability density of gamma distribution whose mean value is a
function of time. In case that the expression in parentheses in Eq. (21) is not equal zero,
function f() is more complicated; its form and derivation are given in Appendix. It is
apparent from Eq. (22) that for values b > 1, i.e., 2α > κ1

2, the probability of occurrence
of negligibly small particles is very little; in case b = 1, however, function f(l;t) has
finite and for b < 1 even infinite value when converging l to zero. In these two cases, it
is not possible, according to Feller9, to consider the limit at point l = 0 as natural.
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The case when parameter α in Eqs (10) or (12) equals zero, was analyzed by Feller
(cited according to ref.10). The probability density f(l;t) is for this case expressed, as it
will be given in Appendix, in terms of the modified Bessel function.

Lognormal (and Other) Distributions (q = 1)

The expression for variance as solution of Eq. (17) is generally rather complicated and
will not be given here. We have not succeded to find the expression for the probability
density f(l;t) in simple analytical form. However, it is possible to write down such a
relation for stationary distribution according to Eq. (8) by solving Eq. (12) for
∂f/∂t ≡ 0 (see ref.13)

fs(l) = 
fG[1/l;al

_
s,a + 1]

l2
  , (23)

where a ≡ 2β/κ2
2 and l

_
s = α/β. Equation (23) describes the gamma distribution, however,

with reciprocal argument (see also refs1,14). The expression holds only for positive
values of parameter β.

The analytical expression for the population development in time can be found in the
particular case of α ≡ 0. It is possible to show (see Appendix) that in this case the
population is characterized by the lognormal distribution

f(l;t) = fN[log (l); log [l(t)
___

/r(t)], log r2(t)]/l  , (24)

where r2(t) ≡ [(σp
2 + l

_
p
2)/l

_
p
2] exp (κ2

2t) and  l(t)
___

 = l
_
p exp (−βt). The variance is, for this case,

given by the relation

σ2
2(t) = σp

2 exp [−(2β − κ2
2)t] + l

_
p
2 exp (−2βt) [exp (κ2

2t) − 1]  . (25)

For the case of diminishing the particles, the relation 2β > κ2
2 has to hold.

Particular Relations for Particle Distribution in Flow System

General relation for the particle size distribution in flow system is expressed by relation
(9). Different particular expressions for function f(l;∆t) behind the symbol of integral
are given by Eqs (19), (20), (22) and (24), everywhere inserting symbol ∆t for t as it
follows from the consideration before Eq. (9). Function ff(∆t) stands for the probability
density of residence times in flow system. Comparatively extensive literature (see, e.g.
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refs15,16) is bestowed on this question in which a great number of relations is proposed
for expressing function ff(). Here we shall consider only the gamma distribution15 of
residence times of particles in flow system

ff(∆t) = fG(∆t;c/t
_
,c)  , (26)

i.e., the equation analogous to Eq. (22). Symbol t
_
 denotes the mean residence time of

particles in system. Symbol c is the distribution parameter and its value decreases with
increasing the intensity of randomness of particle motion [c ≥ 1]. We have shown pre-
viously13 that this function can be obtained on the basis of concepts on random particle
motion in flow system which lead to the stochastic differential equations analogous to
the relations given in this contribution. According to our experience, function (26)
makes it possible to describe well the experimental data on the liquid residence times
in homogeneous system17.

Inserting this relation into Eq. (9) results in expressions which, in most cases, have
to be integrated numerically, analytically can be usually described only the moments of
resulting distribution fe(l).

In case that the density of particle size distribution is given by Eq. (22), we shall
obtain, for the mean size value of particles leaving the flow system, the relation

l
_
e = l

_
s + (l

_
p − l

_
s)µ1  , (27)

where the expressions for the stationary and initial (here entering) mean values have
been defined at Eq. (14) and  µ1 ≡ [c/(c + βt

_
)]c. The relation for variance is more

complicated

σe
2 = l

_
e
2 /b + (l

_
p − l

_
s)2(µ2 − µ1

2)[1 + (1/b)] + µ2(σp
2 − l

_
p
2)  ; (28)

the expression for parameter b has been defined at Eq. (21). Further, µ2≡ [c/(c + 2βt
_
)]c.

For the value of parameter c = 1, these expressions are simplified. In this case, the
distribution of residence times is described by the exponential function

ft(∆t) = fG(∆t;1/t
_
,1) = 

1
t
_ exp (−∆t/t

_
)  ; (29)

the flow system therefore behaves as an ideal mixer with the mean residence time t
_
.

Moreover, if we consider that particles of negligibly small size enter the system (their
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distribution density is described by the Dirac function ffp(lp) = δ(lp)), it is possible to
write, for the distribution density of particles leaving the system, the differential equation
describing even the non-stationary regime of the particle size change (see Appendix)

1
2
 
∂2[w2(l) fe(l;t)]

∂l2
 − 

∂[v(l) fe(l;t)]
∂l

 − 
fe(l;t)

t
_  = 

∂fe(l;t)
∂t

  . (30)

The stationary particle distribution density at the system outlet, i.e., fe(l) = limt→∞ fe(l;t),
can be obtained as a solution of ordinary differential equation which we obtain so that
∂fe(l;t)/∂t ≡ 0 is set in Eq. (30). It is shown in Appendix that for t → ∞, the solution of
the ordinary differential equation obtained in this way, is identical with the solution of
integral (9) where we insert from Eq. (29) for ft(∆t). For the case when the particular
form of coefficients in Eq. (10) leads in the non-flow system to gamma distribution
(i.e., for value q = 1/2), this equation can be written in the form

1
2

κ1
2 

d2(lfe)
dl2

 − 
d[(α − βl)fe]

dl
 − 

fe
t
_  = 0  , (31)

and its solution in terms of integral (see Appendix) is

fe(l) = 
λh

Γ(b) ∫  
λl

∞
exp (−u)ub−h−1(u − λl)h−1 du  , (32)

where λ ≡ 2β/κ1
2, b ≡ 2α/κ1

2, h ≡ 1/(βt
_
).

The simplest way when it is possible to describe function fe(l) in terms of elementary
functions is this one when the subintegral function f(l;t) in Eq. (9) is equal to the Dirac
function, introduced by relation (20). If we, moreover, insert here for the mean value
from Eq. (14a) for lp = 0, we obtain

fe(l) = ∫  
0

∞
δ[l − α∆t] fG(∆t;c/t

_
,c) d∆t = fG(l;c/t

_
α,c)  ; (33)

the density of particle distribution is then again described by the gamma distribution.
Parameters of this distribution are, however, in this case determined above all in terms
of parameters of distribution of particle residence times1.

RESULTS AND DISCUSSION

It was shown in theoretical part that the approach proposed in this work, i.e., use of
stochastic differential equations (SDE) and the adequate diffusion equations for modell-
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ing the diffusion changes of particle size, makes it possible to derive some distributions
used for the description of particle distribution (see Table I). In doing so, above all the
equations were presented making it possible to describe relatively simply the evolution
of these distributions in time.

Use of SDE makes it possible to express simply appropriate physical concepts on
stochastic change of particle size. It has been emphasized that the quantitative formula-
tion of these concepts has to meet requirements of a so-called natural boundary condi-
tion for null (or negligibly small) particle size: The deterministic component of rate of
the particle size change for this limiting value has not to be negative and its random
component has to be equal zero.

The possibility of using SDE for the description of crystal size was outlined by
Buyevich et al.18 when analysing the non-stationary behaviour of flow crystallizers. The
adequate diffusion equation had already been written down, substantially formerly by
Randolph and White1,19. In the works cited, however, the “diffusion coefficient” (here
designated by expression w2(l)/2) was considered to be a positive constant, therefore a
quantity independent of particle size. As it follows from comparison of Eqs (6) and
(12), for the null value of parameter q, w2(l) = κ0

2 = const > 0 will in this case hold.
In the paragraph on normal distribution (q = 0), however, we have said that its use

for the description of particle size distribution (see Eq. (9)) is theoretically incorrect for
it predicts the existence of particles with “negative” size. This fact manifests itself
especially significantly when describing the growth of particles with negligibly small
size at the beginning of the process.

The portion of “negative” particles p(t) at each time instant may be expressed by the
relation

TABLE I
Types of particle size distribution in dependence on the form of coefficients of stochastic differential
equation (10)

Values of coefficients of SDE (10)
Type of distribution Note/Range of validity

q α β

0 >0 >0 normal theoretically incorrect, even
“negative” particle sizes considered

  1/2 >0 >0 gamma σp
2 − lp2 κ1

2 ⁄ 2α = 0

1 >0 >0 gamma with reciprocal
argument

stationary distribution only

1  0 >0 lognormal lp > 0
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p(t) = ∫  
−∞

0

f(l;t) dl = ∫  
−∞

0

fN(l;l(t)
___

;σ0
2(t)) dl  , (34)

where it is necessary to solve the integral numerically or on using the tabulated values
of the Laplace function20.

Quantity p(t) will have null value only in case of κ0
2 ≡ 0, i.e., for only one admissible

value of parameter κ0 when the probability density f(l;t) can be expressed by means of
Eq. (20). In this case the change of particle size is strictly deterministic. This require-
ment is fulfilled, at least approximately, for a very low value of variation coefficient1.
It is, however, evident that for the description of time evolution of particle distribution
with the initial negligibly small size, a low value of this coefficient can be reached only
after a sufficiently long time interval from the beginning of the process.

This assertion is illustrated in Figs 1. Figure 1a illustrates the time development of
population which has normal distribution at negligibly small initial particle size. Figure 1b
shows portion p(t) of “defective” particles (i.e., the particles which would have nega-
tive size). The same time instants for which the distribution densities are illustrated in
Fig. 1a, are here marked with solid points*.

FIG. 1
Normal particle size distribution. Parameters: α = 2, β = 1, κ0 = √2, q = 0, lp = 0, σp = 0. a Particle
growth in time t according to Eq. (19); 1 t = 0.1, 2 t = 0.2, 3 t = 0.5, 4 t = 1, 5 t = 2, 6 t = 5. b Portion
of particles with “negative” size according to Eq. (34). Points designate portions of particles for time
instants corresponding to curves in Fig. 1a
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* The values of parameters in these and all further figures were chosen for the depicted dependences to
be as illustrative as possible, without, e.g., showing realistically the real size of particles. For this
reason we do not give the units of these parameters in figure captions.



The lognormal distribution, which is often considered to be only empirical, does not
suffer from this defect, i.e., from predicting the negative values of particle size. How-
ever, already Kolmogorov21 had shown on the basis of stochastic approach to the de-
scription of particle disintegration (e.g., grinding) that the density of their size
distribution may be expressed in terms of lognormal distribution which will be written
down here by the relation

f(l;t) = fN(log (l);Pt,Q2t)/l  . (35)

It is reported3 that this distribution safisfactorily describes the experimental data for
sufficiently long time intervals t from the beginning of the process. Reason of this
limitation of validity follows from the comparison of distribution parameters in Eq. (35)
with those of our proposed relation (24). As it is stated in Appendix, Eq. (35) holds
only in case that for Eq. (24), the non-equalities are fulfilled

κ2
2t >> log (σp

2/l
_
p
2 + 1)  ;     (β + 

1
2

κ2
2)t >> log [(l

_
p
2/(σp

2 + l
_
p
2)1/2)]  , (36)

i.e., for such values of t when it is possible to neglect the effect of parameters of initial
distribution (then, obviously, P = −(β + 1/2κ2

2) and Q = κ2)). Equation (24) proposed by
us can therefore be considered more general than the distribution proposed by Kolmo-
gorov.

The lognormal distribution proposed here is not too suitable for describing the par-
ticle growth, i.e., for the case when β < 0 (and  α = 0) for, as it is evident from relations
(14) and (25), its parameters diverge with time. It does not make it possible to describe
the growth of particles of negligibly small size as well. As one can see from Eq. (10),
the contributions dL(t) for particle size L(t) → 0 are negligibly small as well.

The proposed distribution density (Eq. (24)) is, however, suitable for the description
of diminishing the particles (at α = 0 and β > 0) for still at the validity of condition
2β > κ0

2 (see note under Eq. (25)), it converges with increasing time to the stationary
solution – the Dirac function δ(l), i.e., it expresses the fact that all the particles will,
after elapsing a very long time from the beginning of process, negligibly small.

In Fig. 2, the time course is shown of diminishing the particles from the initial dis-
tribution density represented by the curve for t = 0.

The gamma distribution is free from the failures which were pointed out with the two
above-mentioned distributions. The solution of Eq. (12) for the value of parameter q = 1/2
results, admittedly, generally in higher transcendental functions (see relations (A8) or
(A9) in Appendix), however, it is necessary to emphasize that in case of negligible
initial particle dimensions, the solution has always the analytical form of probability

Application of Stochastic Diffusion Processes 551

Collect. Czech. Chem. Commun. (Vol. 61) (1996)



density of gamma distribution (whose parameters, however, change with time) for any
further time instant (see Eq. (22). In case that the initial particle distribution is gamma
distribution with the given parameters, the process of changes of particle size must be
conducted so that the variation coefficient of distribution should remain unchanged.
Examples of the time change of particle density during their growth from a negligible
value are given in Fig. 3a. The curve for t = 8 represents practically stationary distribution.

It is still necessary to point out the fact that the gamma distribution is able to de-
scribe even a non-zero probability density (in case of parameter 0 < b ≤ 1) for particles
of negligible dimensions. Further it is known that according to central limiting theorem,
the form of gamma distribution for high values of parameter b approaches the normal
distribution11. On the other hand, when value of b approaches unity (from the right), it
is possible, by means of the gamma distribution, to approximate the experimental
Rosin–Rammler distribution2, where γ = 1 + ε:

f(l) = lim
ε→0+

 (1 + ε)(l/l
_
)ε exp [−(l/l

_
)1+ε]/l

_
  . (37)

It should be noted here that by the substitution of the independent variable in Eq. (22)
with its γ-th power and after some rearrangements we obtain a relation for the transitive
probability density function of the particle size in the form f(l;t) = fG(x;1,b) | dx/dl| . The
dimensionless variable x is a function of the particle size l and time t

x = x(l,t) ≡ 
(l/ls)γ[Γ(b + 1/γ)/Γ(b)]γ

[(lp/ls)γ − 1] Θ + 1
  . (38)
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FIG. 2
Density of lognormal distribution of particle sizes
– diminishing particles in time t according to Eq. (24).
Parameters: α = 0, β = 3, κ2 = 0.5, q = 1, lp = 2.01,
σp = 1.07; 1 t = 0, 2 t = 0.2, 3 t = 0.4, 4 t = 0.6,
5 t = 0.8

552 Kudrna, Hasal:

Collect. Czech. Chem. Commun. (Vol. 61) (1996)



At certain values of the parameters γ and b, the preceding relation can be simplified
and the function f(l;t) enables (in an analytical form) to describe time evolution of some
particle size distributions (most of them were already discussed in this paper):

1. γ = 1 the gamma distribution,
2. b = 1 the Rosin–Rammler distribution,
3. γ = –1 the gamma distribution with reciprocal argument,
4. γ = 2, b = 1 Raleigh distribution22.
The solution of Eq. (12) for q = 1/2 and for the case when parameter α is equal zero

(thus, for a negative value of rate of change of particle size v(l) = –βl, where β > 0), is
to be expressed by means of the modified Bessel function. It may be used even for the
case of diminishing the population, i.e., e.g., for dissolving particles. It is so because
this solution does not keep norm as it is apparent after its integration over the entire
range of variable l (see Appendix)

∫  
0

∞
ft(l;tlp) dl = 1 − exp 




− 

λlpΘ
(1 − Θ)




  , (39)

where lp is the initial size of all particles. The value of this integral from the transitive
function should be equal unity, which would physically mean that the number of par-
ticles of population does not vary during the process. In this case the size of population
decreases with time*. The boundary condition for l = 0 is here a so-called absorbing
boundary9,10.

The function which describes gamma distribution – see Eq. (22), is very flexible and
can easily be, e.g., modified for expressing distributions determined experimentally by
sieve analysis. Multiplying the probability density by the third power of variable l used
for the description of so obtained experimental data, does not change in principle the
analytical form of the function1. Therefore, it is possible, at least from theoretical point
of view, to recommend the gamma distribution as very suitable for the description of
particle distribution and its time changes.

The record of changes of particle size in terms of stochastic differential equation (5)
is suitable also for direct stochastic modelling of the process, as it is apparent from Fig. 3b.
In this figure, the courses of the same functions are depicted as in Fig. 3a, however,
they are obtained by numerical modelling of the processes according to stochastic dif-
ferential equation (10) with the value of parameter q = 1/2.
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obtain the expression 1 – [λlpΘ/(1 – Θ)b + 1]–b by integrating the product of fp() and the right-hand
side of Eq. (39) with respect to lp on the interval [0,∞). Even in this case the diminution of number of
particles therefore takes place.



The problems connected with this way of calculating the probability density of sto-
chastic functions, above all in case when coefficient w() in the stochastic term depends
on the sought stochastic function L(t) had been discussed formerly23,24. In our case we
have used the simplest – Euler – method of integration of the following equation

∆L(t) = [α − βL(t)] ∆t + κ1[L(t)]1/2 ∆W(t)  . (40)

For the time step ∆t = k, the increment of the Wiener process was expressed by the
relation ∆W(t) = G01 √k, where G01 is the stochastic quantity normally distributed with
null expected value and unit variance. It was generated by means of the same random
number generator as in previous paper23. 219 trajectories of random process L(t) with
time step k = 0.0001 were calculated.

The outlined approach will be of significance above all in the case when it is necess-
ary to consider even the processes of agglomeration, or diseggregation of particles (i.e.,
the case when the particle size changes in steps). Then it would be necessary to com-
plement the stochastic differential equation by another random term containing the
generalized Poisson process8 which describes these step changes. Even in this case it is
possible to write down the adequate integral-differential equation8 for the sought den-
sity of particle size distribution, its analytical solution, however, is not usually possible.
Rather a different approach to this problems (simulation by the Monte Carlo method) is
reported by Ramkrishna5,25.

Further it was shown that as far as the time development of particle population in
non-flow system is known, the particle size distribution in a flow system is to be deter-

FIG. 3
Density of gamma distribution of particle sizes – particle growth in time t. Parameters: α = 2, β = 1,
κ1 = 0.5, q = 1/2, lp = 0, σp = 0; 1 t = 0.2, 2 t = 0.4, 3 t = 0.6, 4 t = 1, 5 t = 8. a In terms of Eq.
(22), b stochastic modelling according to Eq. (40)
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mined to advantage by means of randomization of time variable (see Eq. (9)) on the
assumption that the residence time distribution of particles in the system is known as
well.

In case the density of particle size distribution in non-flow system is described by the
gamma distribution, and the flow mixer is ideally stirred, Eq. (32) was derived. It is
possible to prove (see Appendix) that providing the values of parameters β and κ1 in
this relation approach zero so that simultaneously λ remains a positive constant, the
expression on the right-hand side of Eq. (32) converges to function fG() in Eq. (33) for
c = 1, i.e., for the exponetial distribution of particle sizes

fe(l) = 
exp (−l/t

_
α)

t
_
α        [c = 1]  . (41)

It might be shown as well that for non-zero values of parameters κ1 and β (β > 0), an
“excess” of particles of small sizes takes place with respect to the number of small
particles calculated by means of Eq. (41) in case h > b – 1 (i.e., for comparatively short
mean residence times in system), and their “shortage” in the oposite case. This fact is
documented in Fig. 4. The exponential curves represented in terms of Eq. (41) (dash
line) and converging Eq. (32) to it for low values of β and κ1 (and therefore high h and b)
practically coincide. We assume that the method proposed here makes it possible to
explain more suitably the existence of “excess” of small particles than the presumption
of dispersion of particle growth rates introduced by Larson et al.14.

Further it was stated that as far as the ideally stirred system is concerned, it is
possible (with negligibly small size of entering particles) to describe the particle size
distribution in terms of the same differential equation as in non-flow system which,
however, contains, in addition, the additive term directly proportional to the sought
function (see Eq. (30)).

If we set w() ≡ 0 in Eq. (5), the term in Eq. (30) containing second derivative disap-
pears (i.e., the term characterizing the random changes of particle size). We obtain Eq. (4),
i.e., the well-known population balance1,*. The stochastic differential equation (5) then
turns into an ordinary differential equation which describes only the change of particle
size without action of random effects. For instance, the right-hand side of Eq. (17) is
then identically equal zero, and the variance of distribution (with zero initial value)
then remains zero during the whole further process.

From the above-mentioned follows, that the population balance as a first-order par-
tial differential equation, is unable to describe the random development of particle

Application of Stochastic Diffusion Processes 555

Collect. Czech. Chem. Commun. (Vol. 61) (1996)

* Weng26 pointed out the relation between the randomization of time parameter and the solution of
population balace in a paper dealing with flow crystallizers.



population in a non-flow system (unless, e.g., we consider the rate of size change or
boundary condition as a stochastic function of time), and that the particle size distribu-
tion in a flow system is conditioned only by residence time distribution of these par-
ticles. For a more detailed description of population development it would be therefore
suitable to complete Eq. (4) by a “diffusional” term. This fact was pointed out by
Randolph and White19 who recommended such a formal complementing so that the
“diffusivity” – as we have already stated – considered as a constant. The approach
proposed by us, i.e., use of SDE, this diffusion term directly implies, from the preced-
ing considerations of boundary conditions folloving that this “diffusivity” has to de-
pend on particle size, namely, that its value has to converge to zero (from the right) on
diminishing the size to infinitesimal dimension.

CONCLUSIONS

1. The application of stochastic differential equations was proposed to the descrip-
tion of changes of solid particle size during crystallization, polymerization, abrasion
and the like; the adequate diffusion equations then make it possible to describe the time
development of population of these particles.

2. The particular forms of coefficients in these equations were proposed which lead
to the description of time development of populations for the most often used distribu-
tions (normal, lognormal, gamma distributions).

3. This approach was employed even for the flow system; the methods of computa-
tion of density of particle size distribution were proposed on the basis of knowledge of
distribution of particle residence times in this system and simultaneous knowledge of
density of their size distribution in non-flow system.

4. It was shown that the population balance in the usually used form (Eq. (4)) does
not make it possible to simply describe the time development of these populations in
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FIG. 4
Density of particle size distribution in flow ideally
stirred system. Solid lines 1–3 according to Eq. (32),
dashed line according to Eq. (41). Parameters: λ =
1.02, tα = 1/λ; 1 b = 50, h = 5; 2 b = 51, h = 50;
3 b = 5, h = 50
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non-flow systems, and therefore its complementing was proposed by the “diffusional”
term with “diffusivity” which is a function of particle size.

APPENDIX

Solution of Equation (12) for q = 1/2

All the terms of Eq. (12) are divided by parameter β, and new variables τ ≡ βt; z ≡ λl =
(2β/κ1

2)l are inserted:

∂ft
∂τ + 

∂(b − z)ft
∂z

 − 
∂2zft
∂z2  = 0       [b > 0]  . (A1)

The stationary solution of this equation (for ∂ft/∂τ ≡ 0) is

fs(z) = Czb−1 exp (−z)  . (A2)

The value of integration constant C = 1/Γ(b) is calculated from the condition that func-
tion fs() should be the probability density and its integral in limits from zero to infinity
has to equal unity. A general solution of Eq. (A1) will be sought in the form

ft = zb−1 exp [−(z − ντ)] y(z)  , (A3)

where ν = const and y is the sought function of variable z. After inserting into Eq. (A1)
and rearranging we get the relation

z 
d2y
dz2 + (b − z) dy

dz
 − νy = 0  , (A4)

whose solution is the equation y = AΦ(ν,b;z) + Bz1–bΦ(ν – b + 1,2 – b;z), where Φ is
the so-called confluent hypergeometric function27. Integration constant B has to be
equal zero for otherwise the solution would not converge to the stationary solution
according to Eq. (A2) on growing τ ad infinitum. It is further well-known28 that for ν =
n = 0, –1, –2, –3, …, function Φ() turns into the generalized Laguerre polynomial
Ln

(b − 1)(z) so that the single partial solutions of Eq. (A4) are yn(z) = AnLn
(b − 1)(z) and fur-

ther the general solution of Eq. (A1)
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ft(z;τzp) = zb−1 exp (−z) ∑ 
n=0

∞

AnLn
(b−1)(z) exp (−nτ)  . (A5)

Constants An are determined from the initial condition; for the transitive probability
density has to hold limt→0 ft(z;τ| zp) = δ(z − zp). Therefore we multiply both sides by
Lm

(b − 1)(z) and integrate with τ = 0

∫  
0

∞
δ(z − zp)Lm

(b−1)(z) dz = ∑ 
n=0

∞

An ∫  
0

∞
zb−1 exp (−z)Ln

(b−1)(z)Lm
(b−1)(z) dz  . (A6)

With regard to the orthogonal properties of the Laguerre polynomials, the value of integral
on the right-hand side is equal zero when m ≠ n, in the opposite case it is equal Γ(b + n)/n!
(ref.27). For the integration constants therefore holds: An = Ln

(b − 1)(zp)n!/Γ(b + n). After
inserting these relations into Eq. (A5), we finally have the general solution

ft(z;τzp) = zb−1 exp (−z) ∑ 
n=0

∞
n!

Γ(b + n)Ln
(b−1)(zp)Ln

(b−1)(z) exp (−nτ)  . (A7)

The expression on the right-hand side can be summed up28 and after inserting the
original variables and rearranging we get the general relation for transitive probability
density

ft(l;tlp) = 




l
lpΘ





(b−1)/2

 exp 



−

λ(l + lpΘ)
1 − Θ




 Ib−1 





2λ(llpΘ)1/2

Θ



 

λ
1 − Θ  . (A8)

Symbol I stands for the modified Bessel function. In case that the initial probability
density describes the gamma distribution as well in the form fp(lp) = fG(lp;g/l

_
p,g), where

l
_
p is the mean value of initial distribution and parameter g ≠ b, we obtain after integrat-

ing, indicated by Eq. (7), the general relation28

f(l;t) = fG[l;λ/(1 − Θ),g](1 − H)gΦ[g,b;λlH/(1 − Θ)]  , (A9)

where H ≡ λl
_
pΘ/[λl

_
pΘ + g(1 − Θ)]. In case g = b, function Φ is simplified: Φ(b,b;x) =

exp (x), and Eq. (A9) turns into Eq. (22).
Feller (cited according to ref.10) presents a solution for the particular case when α = 0

and consequently b = 0. Equation (A8) is in addition rather simplified regarding the
relation I–1(x) = I1(x) (ref.28). If we insert this Feller solution into the integral in Eq. (38)
and use the dimensionless variables u ≡ λl/(1 – Θ) and up ≡ λlpΘ/(1 – Θ), we obtain
after integrating28
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∫  
0

∞
(u/up)−1/2 exp [−(u + up)]I1[2(uup)1/2] du = up exp (−up)Φ(1,2;up)  . (A10)

From the definition of confluent hypergeometric function follows that Φ(1,2;x) = [exp
(x) – 1]/x. After rearranging the right-hand side of Eq. (A10) with regard to the last
relation and backward inserting we get the solution of integral in Eq. (39).

Solution of Equation (12) for q = 1 and α = 0

∂ft
∂t

 − β
∂(lft)

∂l
 − 

1
2

κ2
2
∂2(l2ft)

∂l2
 = 0  . (A11)

As it is reported by Sveshnikov22, Eq. (A11) is to be solved easily by exchanging vari-
ables when we set x ≡ log (l) + (κ2

2 /2 + β)t and τ ≡ κ2
2t. Then we obtain the well-known

diffusion equation ∂f′/∂τ − ∂2f′/∂x2 = 0, whose fundamental solution29 f′(x;τ| xp) = fN(x;xp,τ)
is backward inserted into. We get the relation for the transitive probability density

ft(l;tlp) = fN[log l; log lp − (κ2
2/2 + β)t,κ2

2t]/l  . (A12)

As an initial condition we choose the probability density of lognormal distribution
fp(lp) = fN[log lp;log [l(0)

___
/r(0)], log r2(0)]/lp, where r2 and l are defined behind Eq. (24).

After inserting from the last two relations into Eq. (7) and after integrating, we obtain
Eq. (24). If we insert into expressions for the two parameters in Eq. (24) from the
definition relations behind this equation, we get log [l(t)

___
/r(t)] = log [l

__
p
2/σp

2 + l
_
p
2)1/2] −

(β + 1/2κ2
2)t and log [r2(t)] = log [σp

2/l
_
p
2 + 1] + κ2

2t, where follow non-equalities (36) from.

Recording and Solving the Relations for Flow System

By analogy with the monograph by Carslaw and Jaeger29, it is possible to prove, by
direct substitution, the statement that if we know the solution gA(x,t) of the partial
differential equation

1
2
 
∂2[w2(x)gA(x,t)]

∂x2  − 
∂[v(x)gA(x,t)]

∂x
 − AgA(x,t) − 

∂gA(x,t)
∂t

 = 0 (A13)

for A = 0, then the solution gA(x,t) for A ≠ 0 can be found by means of the relation
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gA(x,t) = A ∫  
0

t

exp (−As)g0(x,s) ds + g0(x,t) exp (−At)       [g0(x,0) = 0]  . (A14)

For A > 0 and t → ∞, the last term on the right-hand side of the equation disappears,
which proves the identity between the solution of Eq. (30) and of integral (9) for ff = A
exp (–At) [A = 1/t

_
] and t → ∞. The condition of validity written in square brackets

behind Eq. (A14), however, sets a limit to this statement just to the case of negligible
value of initial particle sizes. When solving Eq. (31), we proceed by analogy with the
solution of Eq. (A1); we get Eq. (A4), where ν = 1/t

_
. Its solution is an expression which

contains a confluent hypergeometric function, however, this time in the form proposed
by Tricomi27

fe(l) = hΓ(h)fG(l;b/l
_
s,b)Ψ[h,b;(bl/l

_
s)]  , (A15)

where function Ψ is defined in List of Functions, l
_
s ≡ α/β, b ≡ 2α/κ1

2 and h ≡ 1/(βt
_
).

Equation (A15) is further rearranged so that the function fG() is written under the sym-
bol of integral in function Ψ, and the integration variable changed. So we obtain the
integral in Eq. (32).

From the definition of the gamma function follows that for every h = b – 1, relation
(32) changes to exponental function fe(l) = λ exp (–λl). On converging the parameters
β and κ1 to zero, (1/βt

_
) ≈ (2α/κ1

2) where the relation (1/αt
_
) ≈ (2β/κ1

2) = λ follows from,
which proves the statement before Eq. (41). It further follows from the definition of the
gamma function that the value of integral for negligibly small particle size is equal

fe(0) = λhΓ(b − 1)/Γ(b) = λh/(b − 1)  . (A16)

Inasmuch as the value of integral from function fe(l) over the entire range of variable l
equals unity, it proves the statement given behind Eq. (41).

LIST OF FUNCTIONS

Probability density of normal distribution:

fN(x;x
_
,σ2) ≡ 

1
√2πσ2  exp 




−(x − x

_
)2

2σ2




  . (a)

Probability density of gamma distribution:
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fG(x;g,h) ≡ 
g

Γ(h)(gx)h−1 exp (−gx)  . (b)

Modified Bessel function:

Ip(x) ≡ ∑ 
k=0

∞
(x/2)2k+p

k! Γ(k + p + 1)  . (c)

Generalized Laguerre polynomial:

Ln
(b−1)(z) ≡ Γ(n + b) ∑ 

k=0

n
(−z)k

Γ(k + b)k! (n − k)!   . (d)

Gamma function:

Γ(b) ≡ ∫  
0

∞
xb−1 exp (−x) dx  . (e)

Confluent hypergeometric function:

Φ(a,b;x) ≡ ∑ 
n=0

∞
Γ(a + n) Γ(b)xn

Γ(a) Γ(b + n)n!
  . (f)

Confluent hypergeometric function (by Tricomi27):

Ψ(c,b;x) ≡ 
1

Γ(c) ∫  
0

∞
exp (−xs)sc−1(1 + s)b−c−1 ds       [x > 0, c > 0]  . (g)

LIST OF SYMBOLS

a parameter of gamma distribution with reciprocal argument in Eq. (23) [a ≡ 2β/κ2
2]

b parameter of gamma distribution in Eq. (22) [b ≡ 2α/κ1
2]

c parameter of gamma distribution of residence times in Eq. (26)
F distribution function
f probability density (of particle size distribution), L–1

G stochastic quantity with normal distribution
h parameter in Eq. (32) [h ≡ 1/βt

_
]

L(t) characteristic dimension (size) of particle (stochastic time function), L
l particle size (variable of distribution), L
N number of particles
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n density of particle population, L–4

P parameter in Eq. (35), T–1

p portion of particles of “negative” size
Q parameter in Eq. (35), T–1/2

q parameter characterizing particle size distribution
r parameter of lognormal distribution in Eq. (24)
t time,  T
V suspension volume in system,  L3

v rate of change of particle size, L T–1

W(t) Wiener process, T1/2

w random rate contribution, L T–1/2

α constant rate of particle growth, L T–1

β coefficient characterizing rate of change of particle size, T–1

γ exponent in Rosin–Rammler distribution
ε parameter in Eq. (37) [ε ≡ γ – 1]
Θ time factor in Eq. (14) [Θ ≡ exp (–βt)]
κ2q coefficient characterizing random rate of change of particle size, L1–q T–1/2

λ scaling parameter of gamma distribution in Eq. (32) [λ ≡ 2β/κ1
2], L–1

σ2q
2 variance of particle size, L2

Indexes and other signs
e referred to outlet stream
f referred to flow system
G referred to gamma distribution
N referred to normal distribution
p referred to beginning of process
s referred to stationary state
T referred to whole system
t referred to transitive probability density
* referred to empirical distribution
u
_

mean value of quantity u
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